Confidence and prediction intervals for neural network ensembles
نویسندگان
چکیده
In this paper we propose a new technique that uses the bootstrap to estimate conndence and prediction intervals for neural network (regression) ensembles. Our proposed technique can be applied to any ensemble technique that uses the bootstrap to generate the training sets for the ensemble, such as bagging 1] and balancing 5]. Conndence and prediction intervals are estimated that include a signiicantly improved estimate of underlying model uncertainty (i.e.) the uncertainty of our estimate of the \true" regression. Unlike existing techniques, this estimate of uncertainty will vary according to which ensemble technique is used { if the eeect of using a speciic ensemble technique is to produce less model uncertainty than using another ensemble technique, then this will be reeected in the conndence and prediction intervals. Preliminary results illustrate how our technique can provide more accurate conndence and prediction intervals (intervals that better reeect the desired level of conndence (e.g.) 90%, 95%, etc.) for neural network ensembles than previous attempts.
منابع مشابه
Prediction of Egg Production Using Artificial Neural Network
Artificial neural networks (ANN) have shown to be a powerful tool for system modeling in a wide range of applications. The focus of this study is on neural network applications to data analysis in egg production. An ANN model with two hidden layers, trained with a back propagation algorithm, successfully learned the relationship between the input (age of hen) and output (egg production) variabl...
متن کاملPREDICTION OF LOAD DEFLECTION BEHAVIOUR OF TWO WAY RC SLAB USING NEURAL NETWORK APPROACH
Reinforced concrete (RC) slabs exhibit complexities in their structural behavior under load due to the composite nature of the material and the multitude and variety of factors that affect such behavior. Current methods for determining the load-deflection behavior of reinforced concrete slabs are limited in scope and are mostly dependable on the results of experimental tests. In this study, an ...
متن کاملDiversity regularization in deep ensembles
Calibrating the confidence of supervised learning models is important for a variety of contexts where the certainty over predictions should be reliable. However, it as been reported that deep neural network models are often too poorly calibrated for achieving complex tasks requiring reliable uncertainty estimates in their prediction. In this work, we are proposing a strategy for training deep e...
متن کاملConfidence Intervals and Prediction Intervals for Feed-Forward Neural Networks
Artificial neural networks have been used as predictive systems for variety of medical domains, but none of the systems encountered by Baxt (1995) and Dybowski & Gant (1995) in their review of the literature provided any measure of confidence in the predictions made by those systems. In a medical setting, measures of confidence are of paramount importance (Holst, Ohlsson, Peterson & Edenbrandt ...
متن کاملPrediction Intervals for Neural Network Models
Neural networks are a consistent example of non-parametric estimation, with powerful universal approximation properties. However, the effective development and deployment of neural network applications, has to be based on established procedures for estimating confidence and especially prediction intervals. This holds particularly true in cases where there is a strong culture for testing the pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999